

Erstellung und Weiterentwicklung eines Wärmekatasters für Brandenburg

- Projektdokumentation Arbeitspaket 1 -

Inhaltsverzeichnis

Teil 1 Allgemeines			
Projektstruktur	2		
Methodisches Vorgehen	6		
Datenzielbild	10		
Datenschutz und Datengüte	15		
Teil 2 Methodik Datenverarbeitung	19		
Abkürzungsverzeichnis	73		

Ausgangslage und Zielsetzung

- Das Land Brandenburg steht im Zuge der geplanten, verpflichtenden kommunalen Wärmeplanung durch die Bundesregierung vor großen energie- und umweltpolitischen Herausforderungen
- Aktuell wird durch die Landesregierung "Klimaplan Brandenburg" zur Zielerreichung der Klimaneutralität bis 2045 entwickelt. Teil dieses Vorhabens ist ein geplanter Maßnahmenkatalog, in dem die kommunale Wärmeplanung verortet wird
- > Bisher mangelt es an grundlegenden Informationen für die kommunale Wärmeplanung und damit einhergehend an den Realisierungsgrundlagen konkreter Wärme- und Kälteprojekte

- > Auf Grundlage einer Bestands- und Potenzialanalyse vorhandener Wärme- und Kältequellen/-senken Netzinfrastruktur wird hochaufgelöste, quantitative, räumlich differenzierte Abbildung des Status quo generiert (AP 1) und bildet die Grundlage des Wärmekatasters
- Die folgende räumlich differenzierte Prognose der Wärmedarbietung berücksichtigt Entwicklungen der Wärmebedarfe, Heizsysteme und Netze, vor dem Hintergrund energiepolitischer Zielstellung (AP 2)
- > Anknüpfungspunkt für Kommunen wird Unterstützungsangebot für die Wärmeplanung in Brandenburg (AP 3)

Projektbeteiligte

Projektinhalt AP 1 - Ziel ist die Erstellung und Weiterentwicklung eines detaillierten Wärmekatasters für Brandenburg

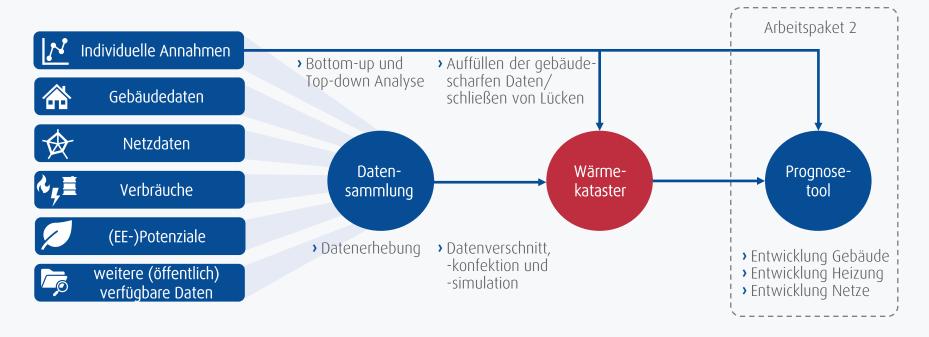
Im Fokus steht die Erfassung, Georeferenzierung und Abbildung von:

Wärme- und Kältequellen (Energieträger, Technologien, ...)

Wärme- und Kältenetzen (Gas-, FW- und NW-Netze, Energieträger, Anschlüsse,...)

Wärme- und Kältesenken (Gebäudetypen, Sanierungszustände, Verbräuche,...)

EE-Potenzialen (Flächen, Abwärme, Speicher, sonstige nutzbare Wärme- und Kältequellen, ...)



Die Summe der aufbereiteten, georeferenzierten Informationen wird auf dem Energieportal Brandenburg zur Verfügung gestellt werden

Inhaltsverzeichnis

Teil 1 Allgemeines			
Projektstruktur	2		
Methodisches Vorgehen	6		
Datenzielbild	10		
Datenschutz und Datengüte	15		
Teil 2 Methodik Datenverarbeitung	19		
Abkürzungsverzeichnis	73		

Methodisches Vorgehen

Datenbedarfe und Datenquellen (1|2)

Datenbedarf

Datenquellen

GIS-Grundelemente

Straßen, Adressen Landkreise, Kreise

Flure

Wärme- & Kältequellen

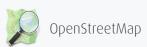
Technologien

u

Netzzuordnung

Energie-

EE-Quellen


Speicher

Datenbedarfe und Datenquellen (2|2)

Datenbedarf

Datenquellen

Wärme- & Kältesenken

Wohngebäude Nicht-Wohngebäude

Industrie

Wärme- & Kältenetze

Weitere Daten

Netzart

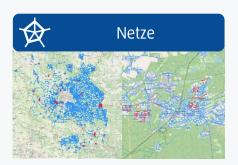
Netzbetreiber Energieversorger

Verbrauchsdaten

ALKIS-Daten

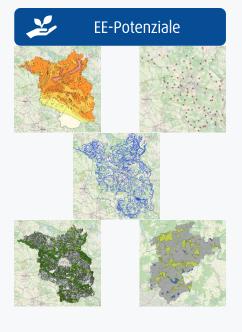
Netzbetreiber Energieversorger

Art, Verlauf, Energieträger, Leistung, ...



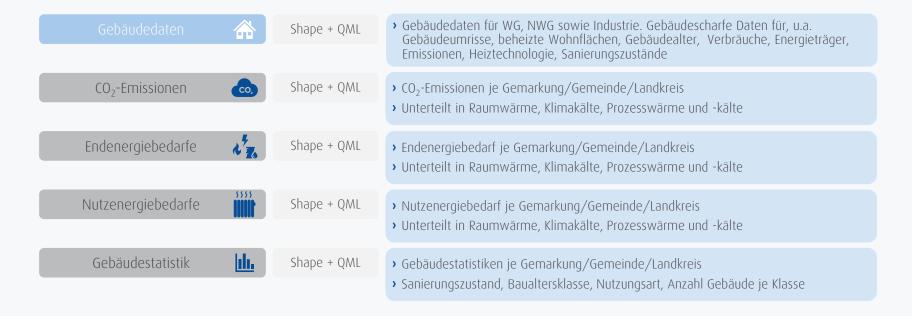
Inhaltsverzeichnis

Teil 1 Allgemeines				
Projektstruktur	2			
Methodisches Vorgehen	6			
Datenzielbild	10			
Datenschutz und Datengüte	15			
Teil 2 Methodik Datenverarbeitung	19			
Abkürzungsverzeichnis	73			


Das Wärmekataster Brandenburg wird eine Vielzahl freizugänglicher, georeferenzierter Daten abbilden

Datenübergaben an das Land (1|2)

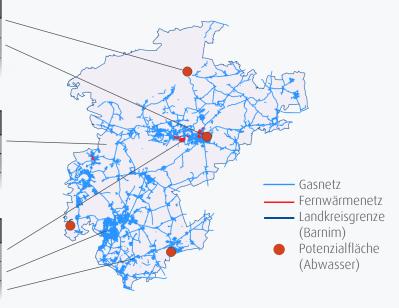
圃 Datensatzbeschreibung Excel > Genaue Beschreibung der einzelnen Dateien, der jeweiligen Spalten und Datentypen Datensatzbeschreibungstexte Word > Inhaltliche Beschreibung und Zusammenfassung der einzelnen Themenbereiche > Erklärungen zum Ablauf und der Reihenfolge der Analyse, inkl. Quellenangaben EE-Potenziale Shape + QML > Eine Datei je EE-Potenzial-Kategorie sowie Flächenaggregationen der Potenziale auf Ebene der Gemarkungen, Gemeinden, Landkreise Netze. Shape + QML > Datensatz mit der Netzinfrastruktur für ganz Brandenburg. Dazu gehören Gas, Nah- und Fernwärme sowie Metadaten der Netze Wärmeliniendichten Shape + QML › Darstellung der Wärmebedarfe als Wärmeliniendichte. Wärmelinien zeigen den gesamten Wärmebedarf in einer Straße bzw. einem Straßenabschnitt



Datenübergaben an das Land (2|2)

Schematische Darstellung der Datenhaltung in Datentabellen

EE-Potenzial Abwasser.shp


• • •	Name	WaermePot	Einheit	geometry
	Eberswalde 5.346 MWh/a		MWh/a	(x_1, y_1)
	Vetschau	18.165	MWh/a	(x_1,y_1)
	Trebbin	1.072	MWh/a	(X_1, Y_1)

Bernim_Landkreis_Endenergie.shp

• • •	Landkreis NutzungArt		ETraeger1	EndEVer	
	Barnim	EFH	Gas	201 GWh/a	
	Barnim	EFH	Heizoel	114 GWh/a	
	Barnim	EFH	Fernwaerme	31 GWh/a	

Netze.shp

• • •	NetzID	Netzart	Betreiber	geometry
	30	Fernwaerme	EWE	$[(x_1,y_1),(x_2,y_2),]$
	G26	Gas	EWE	$[(x_1,y_1),(x_2,y_2),]$
	G121	Gas	EMB	$[(x_1,y_1),(x_2,y_2),]$

Inhaltsverzeichnis

Teil 1 Allgemeines				
Projektstruktur	2			
Methodisches Vorgehen	6			
Datenzielbild	10			
Datenschutz und Datengüte	15			
Teil 2 Methodik Datenverarbeitung	19			
Abkürzungsverzeichnis	73			

Im Rahmen der Verarbeitung und Veröffentlichung wird der Datenschutz durch gezielte Maßnahmen gewährleistet

Synthetisierung

Vertrauliche Daten wurden manipuliert^a und entsprechen nicht mehr den tatsächlichen Verbräuchen. Dennoch spiegeln die synthetischen Daten die Realität im Rahmen von statistischen Abweichungen wider

Geschützter Bereich

Die Eingangsdaten wurden in einem geschützten Bereich verarbeitet, sodass nur ce|co und der Data Owner Zugriff auf die Rohdaten hatten

Aggregation

Die Daten wurden teilweise für Verarbeitung und Veröffentlichung so aggregiert, dass sie keinem einzelnen Haushalte zugeordnet werden können. Dabei wurden Daten auf mehreren Aggregationsebenen kumuliert

Vertragliche Grundlage

Vertraulichkeitsvereinbarungen und weitere vertragliche Grundlagen, sowie ein Daten-Management-Konzept gewährleisteten die zweckgebundene und sichere Datenverarbeitung

Die vier Maßnahmen garantieren qualitativ hochwertige Ergebnisse, die gleichzeitig DSGVOkonform sind

a | Aggregation, Projektion auf Straßen oder andere Werkzeuge

Konzept Datengüte Wärmekataster Brandenburg

Datengüte anhand Quelle

Datengüte wird anhand der Datenquelle und deren Datengenauigkeit (geografisch und bezogen auf Erfassung) festgelegt

Klassifizierung von A bis D

Datengüte wurde nach Vorbild Bilanzierungs-Systematik Kommunal (BISKO) in Abstufungen A-D vorgenommen

Durchgängige Beschreibung

Die Klassifizierung ist gültig für alle im Wärmekataster bereitgestellten Datensätze

Ein Wert bei unterschiedlichen Quellen

Jeder Datensatz ist nur so hochwertig wie der qualitativ niedrigste Teilbaustein - Bei komplexeren Datensätzen bestimmt die schlechteste Qualität der Einzelinformation die Datengüte

Die Ausweisung der Datengüte unterstützt beim Verständnis der Datenqualität und bietet Ansätze für zukünftige Verbesserungen

BISKO; Difu

Aufteilung der Datengüte des Wärmekatasters in vier Kategorien

Datengüte

A - Regionale Primärdaten

- Bezug regionaler autorisierter Primärdaten (Ist- bzw. Messdaten)
- > Beispiel:
 - Geoinformationen/ Verbrauchsdaten von Netzbetreibern
 - Daten vom Amtlichen Liegenschaftskatasterinformationssystem (ALKIS)

B - Hochrechnung regionaler Primärdaten

- Bezug regional verfügbarer Daten validierter
 Datenlieferanten
- > Beispiel:
 - Informationen zum Wärmepotenzial von sEEnergies für Industrielle Abwärme

C – (Regionale) Kennwerte und Statistiken

- Daten oder Schätzungen basierend auf regionalen Datenerhebungen
- > Beispiel:
 - Abzeichnung Liniengenauer Netzdaten von Netzbetreibern
 - > Zuordnung von Energieträgern auf Basis von Netzdaten und stat. Verteilungen von Messdaten

D – Allgemeine Kennzahlen

- Schätzungen basierend auf überregionalen Daten/grundsätzlichen Annahmen
- > Beispiel:
 - Nutzungsgrade für Heizungstechnologien
 - Abzeichnung/ Übertrag flächenhafter Netzdarstellungen von Netzbetreibern

Inhaltsverzeichnis

Teil 1 Allgemeines				
Teil 2 Methodik Datenverarbeitung				
EE-Potenziale	19			
Netze	38			
Quellen und Senken	45			
Abkürzungsverzeichnis	73			

Dargestellte EE-Potenziale im Wärmekataster

Kategorie

Geothermie

Solarthermie

Solar-Aufdach

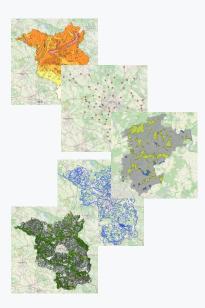
Solar-Freifläche

Windkraft

Fließgewässer

Seethermie

Biomasse


Industrielle Abwärme

Abwasserwärme

Quellen

Eingangsdaten für die EE-Potenziale (1|4)

	Name	Art	Beschreibung	Datengüte	Datenformat	Quelle
Lauraheasset lis Sarsylan A Geslapide and Rahatoffi Biranticuloury	Standorteignung Erdwärmekollektoren		 Potenzielle Standorteignung für Wärmekollektoren des LBGR 	В	Geodaten	LBGR
Lauriement ill Surphur, Goldste and Rahstoffe Goldste und Rahstoffe	Flächenbedarf Erdwärmekollektoren		 Potenzieller Flächenbedarf für Wärmekollektoren des LBGR 	В	Geodaten	<u>LBGR</u>
Landarma His Eurylan, Geologic word Balanders	Temperaturniveaus für tiefe Geothermie		> Temperaturniveaus in 2000m und 4000 m Tiefe	В	Geodaten	<u>LBGR</u>
WFBB Wirtschaftsförderung Brandenburg	Aufdach-Photovoltaik Potenziale		› Geschätzte Potenziale für Aufdach-PV Anlagen	В	Geodaten	WfBB
Agora C REINER LEMOINE	Freiflächen für Solaranlagen	***	 Potenzielle Freiflächen für Solaranlagen in Deutschland inkl. Leistungspotenzial 	В	Geodaten	Agora Energie- wende, RLI
Agora C RU REINER LEMOINE	Windpotenzialflächen	竹	 Potenzialflächen für Windräder inklusive Leistungspotenzial 	В	Geodaten	Agora Energie- wende, RLI

Eingangsdaten für die EE-Potenziale (2|4)

	Name	Art	Beschreibung	Datengüte	Datenformat	Quelle
Landesamt für Umweit	Gewässernetz Brandenburg	**	 Länge und Lage der Fließgewässer in Brandenburg 	А	Geodaten	<u>LfU Brandenburg</u>
Lardesant für Unweit	Abflussentwicklung im Land Brandenburg	**	 Mittlere Abflussmengen der Fließgewässer in Brandenburg 	В	Geodaten	<u>LfU Brandenburg</u>
eawa8	Thermische Nutzung von Seen und Flüssen.	**	 Studie zur thermischen Nutzung von Gewässern mit einer Berechnungsmethodik für Fließgewässerthermie 	В	PDF	<u>Eawag</u>
	Potenzialstudie Berlin 2035	**	 Potenzialstudie klimaneutrale Wärmeversorgung Berlin 2035 mit Wärmeentzugsmenge 	В	PDF	<u>Frauenhofer IEE</u>
Landesamt für Umweit	Seen in Brandenburg	•	> Lage der Seen in Brandenburg	Α	Geodaten	<u>LfU Brandenburg</u>
	Studie "Seethermie"	•	 Potenzialstudie zur thermischen Nutzung des Zwenkauer Sees 	C	PDF	Innovationsregion Mitteldeutschland

Eingangsdaten für die EE-Potenziale (3|4)

	Name	Art	Beschreibung	Datengüte	Datenformat	Quelle
zali	Landwirtschaftliche Nutzfläche	7	 Georeferenzierte Lage von landwirtschaftlichen Nutzflächen in Deutschland 	В	Geodaten	HU Berlin, Thünen- Institut, ZALF
FORSTBrandent	Forstflächen		Georeferenzierte Daten zur Lage von Wald in Brandenburg	В	Geodaten	<u>LFB</u>
LAND BRANDENBURG	Biomassestrategie Brandenburg	- 70	 Biomassestrategie des Landes Brandenburg mit aggregierten Biomassepotenzialen 	В	PDF	MLUK
DEHSt Desistant characteristic	Emissionshandelsliste 2021		> Liste aller Emissionshandelspflichtigen Anlagen in Deutschland	А	Excel	<u>DEHSt</u>
sEEnergies 🎄	Industrielle Abwärmepotenziale		 Abwärmepotenziale großer europäischer Industrieunternehmen 	В	Geodaten	<u>sEEnergies</u>
тип	Industrielle Abwärme in Deutschland		 Studie zu industrieller Abwärme in Deutschland mit Abwärmefaktoren nach Branchen 	В	PDF	<u>S. Brückner, TUM</u>

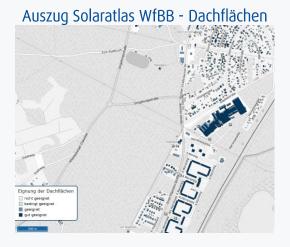
Eingangsdaten für die EE-Potenziale (4|4)

	Name	Art	Beschreibung	Datengüte	Datenformat	Quelle
IZES GMbH Iratilut für ZukurlitzfrergieSysteme	Abwärmenutzung	î.	 Studie zu industrieller Abwärme in DE mit durchschnittlichen Energieverbräuchen nach Branche 	В	PDF	<u>IZES</u>
Landesant für Unweit	Kommunale Kläranlagen Brandenburg	-	› Georeferenzierte Daten zur Lage von Kläranlagen in Brandenburg mit Größe	А	Geodaten	LfU Brandenburg
DUSTATIS wissen.nutzen.	Jahresabwasser- mengen	-	› Jährliche Abwassermengen nach Bundesland	В	Excel	<u>Destatis</u>
	Energie aus Abwasser	-	> Leitfaden zur Wärmerückgewinnung aus Abwasser	В	PDF	<u>LfU Bayern</u>
Landesant für Unwelt	Naturschutzgebiete	♦ ☆ * * * *	 Schutzgebiete nach Naturschutzrecht des Landes Brandenburg (NSG, LSG, NNL (GSG), BE, EZV) und Wasserschutzgebiete des Landes Brandenburg 	A	Geodaten	LfU Brandenburg LfU Brandenburg

Geothermie – Flächendarstellungen

- > Punktuelle Geothermie-Potenzialabfragen sind bereits über das Geothermie-Portal des LBGR a abrufbar
- > Eine aussagekräftige Potenzialabschätzung in MWh ist nicht möglich, deshalb werden nur qualitative Informationen angeführt
- > Karten zu Flächenbedarf und Standorteignung für Wärmekollektoren sowie Temperaturniveaus für tiefe Geothermie wurden visuell aufbereitet und eingebunden
- Für tiefe und oberflächennahe Geothermie werden Wasserschutzgebiete, Seen und Altbergbau ausgeschlossen. Ausschlussgebiete werden in einem zusätzlichen Layer dargestellt

Darstellung der Geothermie-Potenziale als grundsätzliche Standorteignung für Wärmekollektoren und Temperaturniveaus



Solarthermie und PV – Potenzialbeschreibung

- > Bei Aufdach-Anlagen konkurrieren die Technologien Solarthermie und Photovoltaik miteinander
- Georeferenzierte Daten für PV-Potenziale stammen aus dem Solaratlas der Energieagentur BB ^a
- Zur Umrechnung der nutzbaren Solarstrahlung von Strom aus einer PV-Anlage zu Wärme aus Solarkollektoren wurden typische Wirkungsgrade der Technologien genutzt (PV-Anlage: ca. 20 %, Solarkollektor 50-75 % b)
- > Bei konservativer Abschätzung ist das spezifische thermische Solarkollektor-Potenzial somit 2,5-mal so groß wie das spezifische PV-Potenzial

Solarthermie- und PV-Potenziale für Aufdachanlagen, werden gebäudescharf dargestellt

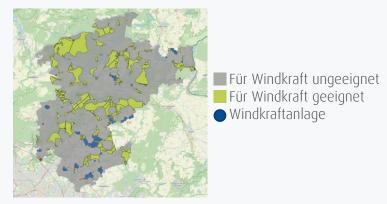
Solar-Freifläche – Potenzialbeschreibung

- Georeferenzierte Daten für Freiflächenpotenziale stammen aus dem Solaratlas der Energieagentur BB ^a
- Die Flächen unterteilen sich in Freiflächen für Photovoltaik nach dem EEG2023 und in potenzielle Agri-Photovoltaikflächen
- > Zu potenzielle Freiflächen werden unter anderem Randstreifen an Autobahnen und Bahngleisen, Ehemalige Konversionsflächen, Halden, Landwirtschafsflächen mit einer geringen Bodenwertzahl und künstliche Seen gezählt
- > Eine Dokumentation findet sich im Energieportal b

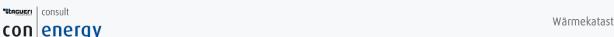
Auszug Solaratlas WfBB - Freiflächen Rietz Radinter Grund Bannenson Grund Damin Grund Damin Auszug Solaratlas WfBB - Freiflächen Grund Damin Damin

Darstellung der Potenzialflächen für Freiflächensolaranlagen auf Basis von Daten des Energieportal Brandenburg

a | Energieagentur b | Abschlussbericht Solarpotenzialanalyse



Windkraft - Potenzialbeschreibung



- Agora Energiewende ^a liefern die maximal nutzbaren Windkraft-Potenzialflächen
- Diese Flächen schließen Wälder (zu 20 %) und Landschaftsschutzgebiete (zu 5 %) ein.
- Ausgeschlossen werden z. B. Naturschutzgebiete, 1000m um Wohnsiedlungen und 465m um errichtete Anlagen
- Das Potenzial auf den Freiflächen wird über einen pauschalen Faktor von 21 MW/km² bestimmt b
- Der Ertrag wird über einen Faktor von 2.600 MWh/MW abgeschätzt b

Wind-Potenzialflächen (LK Barnim)

Darstellung der Potenzialflächen für Windkraft. Die Potenzialwerte für Wälder und Landschaftsschutzgebiete wurden entsprechend gemindert

a | Agora Energiewende, bl Umweltbundesamt

Fließgewässerthermie – Potenzialbeschreibung

- → Lage ^a und mittlere Abflussmenge ^b der Fließgewässer stammen aus dem Geoportal Brandenburg
- > Natur/Wasserschutzgebiete werden ausgeschlossen
- Das jährliche Potenzial E_{Fluss} wird anhand dieser Formel berechnet c: $E_{Fluss} = c_{Wasser} Q \Delta T t_{Iahr}$

c_{Wasser} = Spezifische Wärmekapazität von Wasser

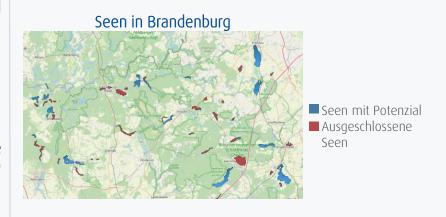
Q = 25 % des mittleren Durchflusses d

 ΔT = Temperatur-Spreizung (2K) ^b

 t_{lahr} = Dauer eines Jahres in Sekunden (31,5 Mio.)

Fließgewässer Potenzial Fließgewässernetz

Darstellung des theoretischen jährlichen Wärmepotenzials aus Flüssen in Brandenburg



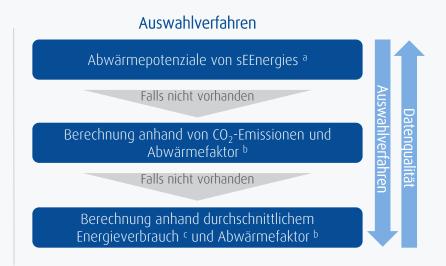
Seethermie – Potenzialbeschreibung

- Lage und Größe der Seen stammt aus dem Geoportal Brandenburg ^a
- > Folgende Ausschlusskriterien wurden definiert:
 - > Fläche < 1 ha
 - > Tiefe < 15 m b
 - > Natur/Wasserschutzgebiete
- Auf Basis der Potenzialberechnung Zwenkauer See durch die Projektgruppe Seethermie (u.a. BTU, ILK Dresden und Tilia) wurde ein Faktor basierend auf der See Größe abgeleitet: ^c

 $E_{see} = 0.981[MWh/a] \times Seefläche[m²]$

Darstellung des theoretischen Wärmepotenzials aus insgesamt 37 Seen in Brandenburg

a | <u>LfU</u>, b | <u>Eawag</u>, c | <u>Innovationsregion-Mitteldeutschland</u>



Industrielle Abwärme – Potenzialbeschreibung

- Industrielle Abwärme steht vor allem bei energieintensiven Prozessen zur Verfügung
- Die Informationen zu Unternehmen stammen aus der Emissionshandelsliste und ce|co Recherche
- Das theoretische Abwärmepotenzial wird auf drei verschiedene Arten berechnet und die höchste verfügbare Datenqualität zur Potenzialbestimmung verwendet (siehe rechts)

Darstellung der potenziellen Abwärme an 37 Industriestandorten in Brandenburg

a | <u>sEEnergies</u>, b | <u>Brücker</u>, c | <u>Grote</u>, <u>Hoffmann und Tänzer</u>

Industrielle Abwärme – Potenzialbeschreibung

1 Abwärmepotenziale von sEEnergies^a

Abwärmepotenzial = ausgewählter Wert

Berechnung anhand von CO₂-Emissionen und Abwärmefaktor^b

Energieverbrauch = CO2-Emissionen/Emissionsfaktor Abwärmepotenzial = Energieverbrauch x Abwärmefaktor

Berechnung anhand durchschnittlichem Energieverbrauch ^c und Abwärmefaktor ^b

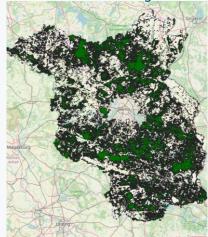
Abwärmepotenzial = geschätzter Energieverbrauch . Abwärmefaktor

Berechnungs-/ Auswahlverfahren

- sEEnergies berechnet Abwärmepotenziale großerIndustrieunternehmen in Europa
- > Für BB wurde jeweils die höchste Berechnung gewählt
- Abschätzung des Energieverbrauchs mit durchschnittlichen CO₂-Emissionen 2013-2022^b und den jeweiligen Faktoren ^c
 - > Erdgas: 0,201 Kg CO₂/kWh
 - **>** Kohle: 0,399 Kg CO₂/kWh
- › Abwärmefaktoren werden nach Sektoren zugeteilt d
- Wenn keine anderen Informationen vorliegen, wird der durchschnittliche Energieverbrauch nach Branche zugeteilte

a | <u>sEEnergies</u>, b | <u>DEHSt</u>, c | <u>UBA</u>, d | <u>Brücker</u>, e | <u>Grote</u>, <u>Hoffmann und Tänzer</u>

Biomasse – Potenzialberechnung



- Die ausgewiesenen Biomassepotenziale unterteilen sich in landwirtschaftliche, forstwirtschaftliche und Grünland-Biomasse
- Die aggregierten Potenziale wurden durch Faktoren aus der Biomassestrategie BB ^a berechnet
- Aktuell werden etwa 14 % der Ackerfläche für Biomasse verwendet ^b
- Für das Potenzial wurde angenommen, dass Ackerland bis zu 30 % und Grünland bis zu 12 % für die Biomasseherstellung verwendet werden können ^a
- » Basierend auf einem Wirkungsgrad von 85 % $^{\rm c}$ wurde das Potenzial gemindert

Größe und Lage Waldflächen in Brandenburg ^e

a | <u>Biomassestrategie</u>, b | <u>BMEL</u>, c | <u>FNR</u>, d | <u>Blickensdörfer</u>, e | <u>LFB</u>

Biomasse – Potenzialberechnung

Fläche in ha		Faktor ^a	Wirkungsgrad	
Ackerland	x 30 %	x 12,05 MWh/ha	x 85 %	
Grünland	x 12 %	x 20,38 MWh/ha	x 85 %	ı
Waldholz		x 0,954 MWh/ha	x 85 %	

Flächenhafte Darstellung des Biomassepotenzials von landwirtschaftlichem, forstwirtschaftlichem und Grünland-Biopotenzial

a | <u>Biomassestrategie</u>

Abwasserwärme – Potenzialbeschreibung

- > Email-Anfragen und telefonischer Kontakt zu 67 Abwasserverbänden und Entsorgungsbetrieben in BB
 - > davon positive Rückmeldungen:
 - durch Eigenrecherche gefunden:
- > Nutzung von Abwasserwärme erst ab 800 DN a möglich
 - Die durchschnittliche Entnahmeleistung bei einer Differenz von 3-4 K liegt bei Beispielprojekten bei 2-4 kW/m^a
 - Die individuellen Entnahmeleistung muss so bemessen werden, dass die Abwassertemperatur nach Entnahme nicht unter 10 °C liegt

Abwasserrohre (Peitz)

Eine realistische Abschätzung der Abwasserwärmepotenziale anhand der Kanaldaten ist wegen zu geringer Datenverfügbarkeit nicht möglich


a | IFEU

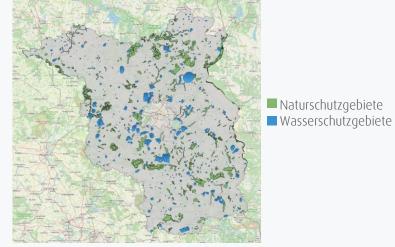
Abwasserwärme – Potenzialbeschreibung

- Das Abwasserwärme-Potenzial wird wegen fehlender Daten auf Basis der Kläranlagen berechnet a
- Lage und angeschlossene Einwohnerwerte zu den Kläranlagen in Brandenburg stammen vom LfU
- > Kläranlagen mit weniger als 5000 angeschlossenen Einwohnern werden ausgeschlossen b
- ⇒ Das Potenzial für Abwasserwärme lässt sich abschätzen durch 1 m³/a \approx 6,42 kWh, wobei angenommen wird, dass pro Person in BB etwa 99,43 l/a an Abwasser anfallen c
- > Kläranlagen mit über 20.000 EW können zusätzlich ein Potenzial von 60 kWh pro EW und Jahr durch Klärgas gewinnen d

Kläranlagen +1000m Radius ^a

Darstellung des Potenzials von Abwasserwärme aus kommunalen Kläranlagen innerhalb eines 1000 m Radius

a | <u>IFEU</u>, b | <u>BLfU</u>, c | <u>destatis</u> (ohne Regenwasser), d | <u>MLUK</u>


Naturschutzgebiete werden bei den Potenzial-Berechnungen berücksichtigt

- Das Geoportal des Landes Brandenburg weist georeferenzierte Daten zu Natur- und Wasserschutzgebieten aus
- Für die Berechnungen werden diese Gebiete ausgeschlossen, falls sie mit den Potenzialen in Konflikt stehen (bspw. keine Windkraft in Naturschutzgebieten)

Natur- und Wasserschutzgebiete Brandenburg

Inhaltsverzeichnis

Teil 1 Allgemeines	2
Teil 2 Methodik Datenverarbeitung	19
EE-Potenziale	19
Netze	38
Quellen und Senken	45
Abkürzungsverzeichnis	73
Abkürzungsverzeichnis	73

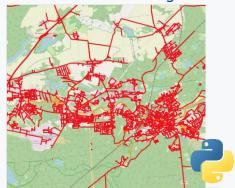
Eingangsdaten für Netzdarstellungen

Name	Beschreibung	Datengüte	Datenformat	Quelle
Originaldaten von Marktakteuren	 Georeferenzierte Netzlagen sowie Verbrauchsdaten, welche von regionalen Netzbetreibern und Energieversorgen direkt bezogen wurden 	А	Excel, Geodaten	Siehe Anhang für Quellen einzelner Akteure
Wärmenetzsammlung vom Landesamt für Bauen und Verkehr	 Sammlung von Zeichnungen und Bilddateien, Leistung, Energie und Energieträgern von regionalen Netzbetreiber im Zuge einer Bestandsaufnahme des Landes 	C	PDF, JPG	LBV intern (2020)
Daten von Websiten von Netzbetreibern	 Durch Recherche ermittelte Informationen zur Netzlage, Primärenergiefaktor und CO2-Faktoren von Websiten 	С	PDF, JPG	Siehe Anhang für Quellen einzelner Akteure
Daten für Straßenzüge	› Informationen zu den Straßenzügen in Brandenburg	А	Geodaten	OpenStreetMap
Energiesteckbriefe Kommunen in Brandenburg 2019	 Gemeindescharfe Verbrauchsdaten von Kommunen in Brandenburg, basierend auf Werten aus 2019 	А	Excel	WfBB intern

OpenStreetMap Straßenverläufe bilden die Grundlage von Netzdaten und Wärmliniendichten

- Das Straßennetz umfasst ganz Brandenburg
- > Vorhandene Informationen differenzieren Straßen nach vorgegebener Kategorisierung, u.a.: Bundesfernstraßen, Landesstraße, Staatsstraßen Kreisstraßen Gemeindestraßen
- Falls verfügbar, sind Straßenname und entsprechende Referenz (z. B. A7, B53, L31,...) ergänzt
- > Zusätzlich haben alle Straßenabschnitte eindeutige Identifikationsnummer (Straßen-ID) erhalten

Aufbereitete Straßenabschnitte haben eindeutige Straßen-IDs und wurden mit Gebäuden sowie Netzinformationen verknüpft


Straßen- und Netzdaten wurden mit Hilfe von Skripten verarbeitet

OSM Input

Download der frei verfügbaren OSM-Datensätze in Paketen je Landkreis

Datenaufbereitung

- > Ergänzung von Metadaten (wie z. B. Vergabe einer eindeutigen StraßenIDs)
 - > Datenclearing
 - > löschen unnötiger Informationen und Straßenabschnitten
 - Neuaufteilung der Straßen-Abschnitte

Ergebnisdaten

- > Verknüpfung mit Netzdaten (Netzanschluss-Information zu FW, NW, Gas, H2)
- > Verknüpfung mit Gebäude-Daten (Zuordnung Gebäude zu Straße; Ermittlung der Wärmeliniendichte aus Wärmebedarf von Gebäuden)

Netze wurden abhängig von ihrem Darstellungstyp mithilfe von Skripten straßenzugscharf verschnitten

- Verknüpfung von Netz und Straßendaten über automatisierbare Python-Skripte
 - Dabei wurden den Straßen vorliegende Netzinformationen zugeordnet
 - Python-Algorithmus nutzt zur Zuordnung Entfernungen zwischen vorhandenen Netzen und Straßen (Radius: max. 10m Abstand zw. Netzverlauf und Straße)
 - Durch das Abstraktionsverfahren entstehen Ungenauigkeiten, auch wenn reale Netzverläufe die Datengrundlage bilden
- › Bei Linien als Datengrundlage: Verwendung eines Radius um die Netz-Linien
- › Bei Elächen: Übernahme von Straßen innerhalb der Netz-Elächen

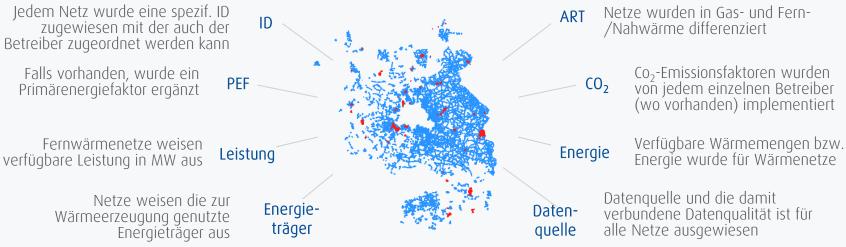
Aus uneinheitlichen Quelldaten konnten straßenzugscharfe Netzinformationen abgebildet werden

Eingangsdaten

- > Netzdaten lagen größtenteils als Bild oder PDF Dateien vor
- Die Bilddateien wurden zur Georeferenz in QGIS abgezeichnet

- Verschneidung aller Netze zu einer gemeinsamen Datei mit einheitlichen Informationen
- > Ergänzung von Metadaten (wie z. B. einer NetzID oder Netzart)

Verschnitt mit Straßen



- > Verknüpfung Net_z VON und Straßendaten über automatisierbare Python-Skripte
- Straßenzugscharfer Verschnitt hilft bei der Zuordnung von Anschlüssen an Gebäude

Neben den straßenzugscharfen Verläufen, verfügen die Netzdaten über Metadaten a mit Zusatzinformationen

Die Metadaten ergänzen das Datenbild. Die Datengenauigkeit schwankt jedoch je nach Datenquelle deutlich. Auch Datenlücken konnten nicht ausgeschlossen werden

a | Gas- und Fernwärmenetze besitzen jeweils unterschiedliche Metadaten

Inhaltsverzeichnis

Teil 1 Allgemeines	2
Teil 2 Methodik Datenverarbeitung	19
EE-Potenziale	19
Netze	38
Quellen und Senken	45
Abkürzungsverzeichnis	73

Übersicht der wichtigsten Eingangsdaten zu Quellen und Senken

	Name	Beschreibung	Datengüte	Datenformat	Quelle
LGB Landesvermessing und Geobasielinformation Brandenburg	Alkis	 Georeferenzierte Gebäudedaten inkl. Grundfläche, Geschossanzahl und Funktion 	А	Shape	<u>OpenGeodata Server</u> <u>der LGB</u>
Zensus Wissen, was morgen zählt	Zensusdaten	› Gebäudeinformationen u.a. zur Baualtersklasse und der Anzahl der Wohneinheiten	В	CSV	Webseite des Zensus 2011
Energieagentur Brandenburg WFBB	Solaratlas	 Auszug aus dem Solaratlas inkl. Aufdach Solarpotenzial und Dachform der Gebäude 	А	CSV	WfBB intern
IWU Gebäude- typologie **Spezifische Wärmebedarfe für Wohn- und Nichtwohngebäude basierend auf baulichen Charakteristika		C	PDF / Excel	Webseite des IWU; IWU Github	
	Netzdaten	 Netzlage und Anschlussverfügbarkeit für Gebäude 	C	Diverse	Vgl. Kapitel "Netze"
bdew statistik 🐟 Berlin Brandenburg	Studien	 Diverse Studien zum Wärmesektor in Brandenburg 	С	Diverse	Diverse, u.a. <u>BDEW</u> , <u>AfSBB</u>
Umwelt 📦 Bundesamt	UBA Dashboard	 Endenergiebedarfe für Wärme und Kälte, je Landkreis und Gebäudekategorie 	C	HTML	<u>UBA Dashboard</u> <u>Webseite</u>

Die Gebäudedaten wurden in drei große Kategorien unterteilt

Differenzierung der Gebäude

- > Einfamilienhaus
- > Reihenhaus
- Mehrfamilienhaus
- > Hochhaus

Nicht Wohngebäude

- > Krankenhaus
- > Bürogebäude
- > Gericht
- > Einkaufszentrum

Industrie

- > Produktionsgebäude
- > Fabrik

Die Analyse verlief jeweils entlang der spezifischen Eigenschaften dieser drei Kategorien. Wohnund Nichtwohngebäude unterscheiden sich im Vorgehen nur geringfügig

Bei Bedarf werden die Gebäudetypen im folgenden auch abgekürzt als: Wohngebäude = WG; Nicht-Wohngebäude = NWG, Industrie = IND

Die Daten zu Wohn- und Nichtwohngebäuden wurden in einem schrittweisen Prozess erstellt

Jedes Gebäude besitzt eine Information zu seinem Wärme-, Kälte-, und Endenergiebedarf sowie CO₂-Emissionen

Die Berechnung des Wärmebedarfs war dabei am arbeitsintensivsten und gliederte sich in verschiedene Bereiche

Die Ermittlung des Wärmebedarfs war ein sukzessiver Prozess, der auf Daten des ALKIS und 7ensus sowie auf statistischen Daten basiert

Die ALKIS Daten wurden vom OpenGeodata Server der LGB getrennt nach Landkreisen heruntergeladen

(\mathbf{Q}				
	ID	Funktion	Anzahlgs	Lage	Geometrie
	Ae6JBL	Wohnhaus	1	Musterstr. 4	Polygon (())
	gDxIBL	Garage	0	Münsterstr. 10 a	Polygon (())
	h6KaBL	Stall	1	Gartenweg 56	Polygon (())
	ckxRBL	Wohnhaus	2	Dorfstr. 82	Polygon (())
	N1kYBL	Gartenhaus	0	Wiesenrain 3	Polygon (())

Die Gebäude enthalten wesentliche Strukturdaten wie Gebäudefunktion, Geschossanzahl und Adresse

OpenGeodata Server LGB

Der ALKIS Datensatz umfasst auch einzelne Gebäudeteile und nicht beheizte Gebäude



Alle nicht beheizten Gebäude(-teile) wurden in der weiteren Analyse nicht berücksichtigt und daher herausgefiltert. Zusätzlich wurden alle Gebäude mit einer Grundfläche < 35 m² entfernt

Die ALKIS Daten wurden mit den Daten aus dem Solaratlas Brandenburg verschnitten

- Der Solaratlas Brandenburg umfasst eine Datenbank mit georeferenzierten, gebäudescharfen Informationen
- Dazu zählen u. a. die Gebäudedachform und die Eignung der Gebäudedachflächen für jedes Gebäude sowie freie Potenzialflächen
- Für die Berechnung der Wärmebedarfe war besonders die Gebäudedachform relevant
- Die bisherigen Gebäudedaten und die Daten des Solaratlas konnten anhand ihrer Georeferenz gebäudescharf miteinander verschnitten werden

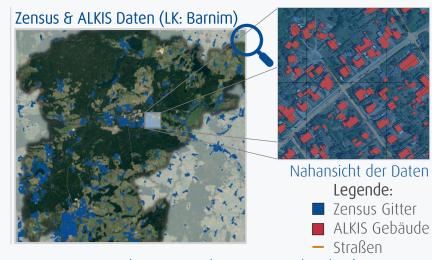
Der bisherige Gebäudedatensatz wurde somit um die Informationen aus dem Solaratlas ergänzt

Solaratlas Brandenburg (WfBB)

Die Zensus-Daten wurden im Gitterzellenformat von der Zensus-Webseite heruntergeladen

(Q			
	Gitter ID	Merkmal	Ausprägung	Anzahl
	100mN32769E45654	Insgesamt	Einheiten insgesamt	10
	100mN32769E45654	Baujahr	1996 – 2000	4
	100mN32769E45654	Baujahr	2001 – 2004	3
	100mN32769E45654	Eigentum	Privatperson	9
	100mN32769E45654	Gebäudeart	Wohngebäude	10

Für jedes 100x100m Gitter lagen aggregierte Daten aller dort verorteten Gebäude vor. Die Zensus-Daten ermöglichten jedoch in dieser Form keine gebäudescharfe Zuordnung


Gitterzellenbasierte Zensus Daten

Die bisherigen Gebäudedaten wurden anschließend mit den Daten des Zensus verschnitten


- 7ensus-Daten lieferten Auskunft über > Die die Baualtersklassen der Gebäude und die Anzahl der Wohneinheiten
- Dies ermöglichte es die Wohngebäude näher zu klassifizieren und in weitere Gruppen zu unterteilen
- Die bisherigen Gebäudedaten und die Daten des Zensus wurden anhand ihrer Georeferenz gitterscharf miteinander verschnitten

Der Gebäudedatensatz bot nun eine Grundlage zur präzisen Schätzung des Wärmebedarfs

Auf Basis der bisherigen Daten konnten die Wohngebäude anhand einer Logik weiter differenziert werden

Quelle: ce|co intern; EFH = Einfamilienhaus; RH = Reihenhaus; MFH = Mehrfamilienhaus; GMH = Großes Mehrfamilienhaus; HH = Hochhaus

Anhand der IWU Gebäudetypologie konnten spezifische Wärmebedarfe für die Gebäude ermittelt werden

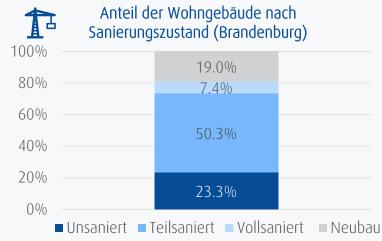
Wohngebäude

- > Zuteilung eines spez. Wärmebedarfs anhand des Gebäudetyps (EFH, MFH, ...) und der Baualtersklasse möglich
- > Spez. Wärmebedarfe liegen verschiedene Baualtersklassen und berücksichtigen bauliche Trends der vergangenen Jahre
- > Regionale Besonderheiten (bspw. Plattenbau) wurden berücksichtigt

Nichtwohngebäude

- > Zuteilung eines spez. Wärmebedarfs anhand des Gebäudetyps (Büro, Schule, Handelsgebäude, ...) und der Baualtersklasse möglich
- Die Nicht-Wohngebäude wurden in drei Baualtersklassen (Vor 1978, 1978 - 2010, nach 2010) unterteilt

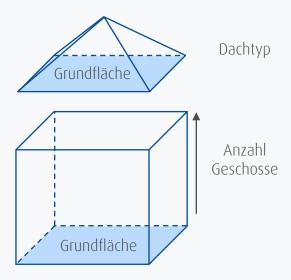
Sanierungszustand


- Für WGs sind die spezifischen Wärmebedarfe unter verschiedenen Sanierungszuständen dargestellt
- > WGs konnte ihr spezifischer Wärmebedarf somit unter Berücksichtigung ihres Sanierungszustandes zugeteilt werden
- › Bei Nicht-Wohngebäuden liegt diese Differenzierung nicht vor
- Der spez. Wärmebedarf der Nicht-Wohngebäude berücksichtigt daher nur den Gebäudetyp und das Baualter

Ouellen: IWU NWG Typologie (2022): IWU NWG Beispielgebäude (2015)

Zur akkurateren Modellierung des Wärmemarktes wurde jedem Gebäude ein Sanierungszustand zugewiesen

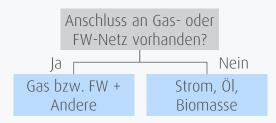
- gebäudescharfe Da keine Ermittlung Sanierungszustands möglich war, erfolgte die Zuordnung anhand statistischer Verteilung
- Der Sanierungszustand wurde basierend auf ihrem Anteil gem. UBA Studie ^a zugewiesen. Die Anzahl der Neubauten aus der Gebäudefortschreibung des Zensus wurde für die Verteilung der Neubauten auf regionaler Ebene genutzt
- > le nach Sanierungszustand erhielt ein Gebäude einen spez. Wärmebedarf gem. IWU Gebäudetypologie b
- Die Nicht-Wohngebäude bekamen den Zustand unsaniert



Die Zuordnung eines Sanierungszustands hilft den Wärmemarkt besser abzubilden und stellt die Grundlage für die Weiterentwicklung der Gebäude im Prognosemodell dar

Basierend auf der Gebäudeform und dem spez. Wärmebedarf wurde der gesamte Wärmebedarf der WGs und NWGs berechnet

- > Folgende Annahmen wurden getroffen: Keine beheizten Untergeschosse. Dachflächen der Wohngebäude können bewohnt werden, für sie fallen 75 % des Wärmebedarfs eines normalen Geschosses an. Sofern der Dachtyp "Flachdach" vorliegt, kann das Dach nicht zu Wohnzwecken genutzt werden. Nicht-Wohngebäude haben heheizten Dachflächen a
- Die Berechnung des Wärmebedarfs erfolgte entlang folgender Formeln:
 - > Beheizte Fläche b = Grundfläche * Anzahl Geschosse * Abschlagsfaktor
 - > Beheizte Fläche ^c = Grundfläche * (Anzahl Geschosse + 0,75) * Abschlagsfaktor
- > Wärmebedarf = Beheizte Fläche * spez. Wärmebedarf


a | <u>Wärmekataster Hamburg Handbuch, S.3f.</u>; b | Wenn Dachtyp = Flachdach; c | Wenn Dachtyp ≠ Flachdach; d | ce|co Annahmen

Energieträger

- Im ersten Schritt wurde der Netzanschluss der Gebäude geprüft
- › Bei ausbleibender Verfügbarkeit eines Gas- oder FW-Netzes wurde ein anderer Energieträger gem. BDEW a zugeordnet

Heizungssystem

- > Basierend auf dem Energieträger wurde dem Gebäude dann ein Heizungssystem zugewiesen
- › Bei einigen Energieträgern waren Mehrfachauswahlen möglich:

Gas: BW-Kessel & Etagenheizung Strom: el. WP & Nachtspeicher

In diesen Fällen wurden die Heizungssysteme anteilig auf die Gebäude verteilt, gewichtet nach Gebäudetypen ^b

Sekundäre Heizung

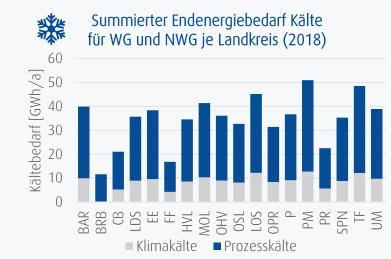
- Den Gebäuden wurde zusätzlich auch noch eine sekundäre Heizung zugeordnet
- Aufgrund der Datenlage erfolgte die Zuordnung nur bei Wohngebäuden
- Die sekundären Heizungen "Kamin" und "Solarthermie" wurden statistisch auf die Wohngebäude verteilt ^c

Anhand des Wärmebedarfs, des Energieträgers und des Heizungssystems wurde anschließend der Endenergiebedarf berechnet

- Zur Berechnung des Endenergiebedarfs je Gebäude wurde der gesamte Nutzwärmebedarf eines Gebäudes mit dem Nutzungsgrad seines Heizungssystems verrechnet
- Es wird angenommen, dass es sich bei den installierten Heizungssystemen der Gebäude um Bestandsheizungen handelt
- Der berechnete Endenergiebedarf bezog sich auf die Bereitstellung von Raumwärme und Warmwasser, Kältebedarfe wurden gesondert betrachtet

Bestandsheizungen & Nutzungsgrade

Bestandsbeheizung	Min. Nutzungsgrad ^a
Fernwärme	95 %
Gaskessel	85 %
Ölkessel	85 %
Pelletkessel	85 %
Gasetagenheizung	85 %
Nachtspeicher	95 %
el. Wärmepumpe	200 %


Der Endenergiebedarf bezog sich nur auf Raumwärme und Warmwasser. Im Anschluss wurden die Kältebedarfe der Gebäude ermittelt

a | Die angegebenen Nutzungsgrade bilden untere Grenzwerte und steigen mit der jeweiligen Gebäudeeffizienz um bis zu 5%, bei Wärmepumpen um bis zu 150%

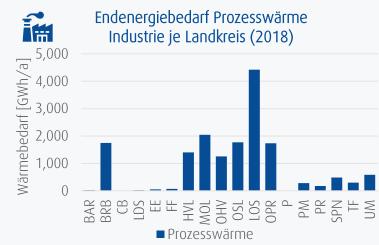
Der Endenergiebedarf für Kälte wurde in die Bereiche Klima- und Prozesskälte aufgeteilt

- Die Kältebedarfe wurden gebäudescharf auf die Wohnund Nichtwohngebäude verteilt
- Die Daten basierten auf einer Studie des UBA und lagen auf Landkreisebene vor ^a
- Es wurde hierbei zwischen Klima- und Prozesskälte differenziert
- > Wohngebäuden wurde nur ein Klimakältebedarf zugewiesen, während hingegen Nicht-Wohngebäude Klima- sowie Prozesskältebedarfe haben konnten
- Die Differenzierung der Nicht-Wohngebäude erfolgte anhand ihrer Gebäudenutzung

Die Kältebedarfe wurden statistisch auf die Wohn- und Nichtwohngebäude verteilt

Für den Bereich Industrie wurde ein anderes Vorgehen gewählt

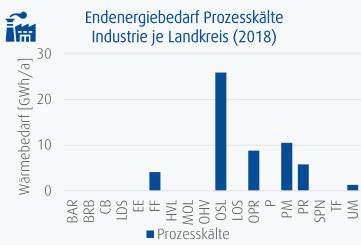
Die Datenlage für die Industrie war sehr lückenhaft, weshalb die Ergebnisse die Realität nur geringfügig widerspiegeln können



Die Wärmebedarfe wurden über verfügbare Statistiken zugeordnet

- Die Daten basierten auf einer Studie des UBA und lagen auf Landkreisebene vor ^a
- > Für die Industrie waren insb. die Prozesswärmemengen relevant
- Die Endenergiebedarfe wurden auf alle identifizierten Industriegebäude gleichverteilt
- Eine hohe Datengüte auf Gebäude-, Gemarkungs- oder Gemeindeebene ist somit nicht mehr gegeben. Auf Ebene der Landkreise entsprechen die Mengen dann jedoch wieder der Realität

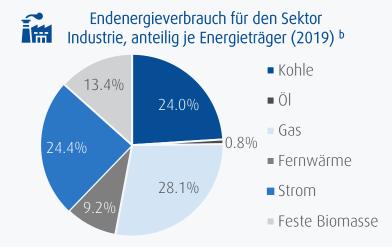
Die Prozesswärmebedarfe wurden auf die Gebäude gleichverteilt und resultieren dort in einer geringen Datenqualität. Auf Landkreisebene stimmen die Daten wieder mit der Realität überein


a | <u>UBA (2018)</u>

Für die Kältebedarfe wurde ein analoges Vorgehen gewählt

- Die Daten basierten auf einer Studie des UBA und lagen auf Landkreisebene vor a
- Für die Industrie waren insb. die Prozesskältemengen relevant
- Die Endenergiebedarfe wurden auf alle identifizierten Industriegebäude gleichverteilt
- Eine hohe Datengüte auf Gebäude-, Gemarkungs- oder Gemeindeebene ist somit nicht mehr gegeben. Auf Ebene der Landkreise entsprechen die Mengen dann jedoch wieder der Realität

Die Prozesskältebedarfe wurden auf die Gebäude gleichverteilt und resultieren dort in einer geringen Datenqualität. Auf Landkreisebene stimmen die Daten wieder mit der Realität überein



Die Endenergiebedarfe für Wärme und Kälte wurden anschließend anhand geeigneter Daten auf die Energieträger verteilt

- Analog zu den Wärme- und Kältebedarfen lagen für die Energieträger der Industrie kaum Daten vor
- Die Verteilung der Endenergiebedarfe auf die einzelnen Energieträger erfolgte daher ebenfalls anhand statistischer Verteilung
- Ausgangsbasis hierfür war die Energie- und CO₂-Bilanz des Landes Brandenburg a und die dortige Verteilung
- Die einzelnen Energieträger wurden in dem Verhältnis auf die Industriegebäude verteilt, unter besonderer Berücksichtigung der Netzsituation vor Ort
 - > Ein Gebäude ohne Gasnetz bekam kein Gas

Die Wärme- und Kältebedarfe liegen auf Ebene der Endenergie vor und konnten daher unmittelbar für die Berechnung der CO₂-Emissionen verwendet werden

a | <u>Energie- und CO₂-Bilanz im Land Brandenburg 2019 (2022)</u>; b | Eigene Berechnung basierend auf Quelle a

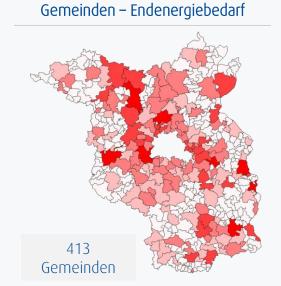
Die Daten des Wärmekatasters werden im Energieportal nicht gebäudescharf sondern in zusammengefasster Form dargestellt

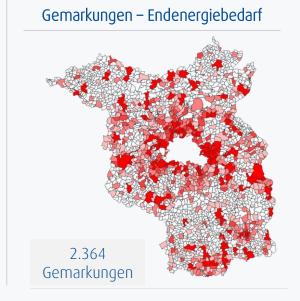
- Die generierten Daten umfassen alle Informationen auf gebäudescharfer Ebene (Tausende Zeilen; ~55 Spalten)
- › Aufgrund der Datenschutz-Restriktionen dürfen die Daten nicht gebäudescharf im Energieportal abgebildet werden und wurden daher in aggregierter Form übergeben
- Die Daten können auf verschiedenen geografischen Ebenen aggregiert werden (Gemarkung, Gemeinde, Landkreis, ...)
- Für jede geografische Ebene liegen die Daten für verschiedene Attribute vor, bspw. CO₂-Emissionen, Endenergie- oder Nutzenergiebedarf
- Die einzelnen Datenpakete wurden im georeferenzierten Shape-Format an den Betreiber des Energieportals übergeben

Gebäudescharfe Daten: WG & NWG & Industrie

Funktion	Wärme- bedarf [kWh/a]	CO ₂ - Emissionen [g/a]	 Gemeinde
Wohnhaus	12.155	11.488	 Wandlitz
NWG	53.258	50.142	 Wandlitz
Wohnhaus	18.942	13.158	 Wandlitz
Industrie	122.561	115.997	 Eberswalde
Wohnhaus	17.074	16.752	Eberswalde

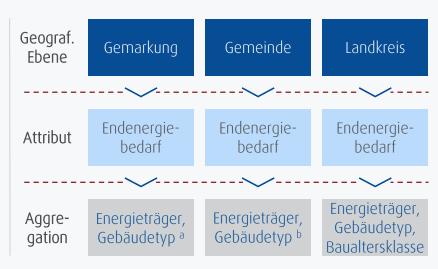
Gemeindescharfe Daten: WG & NWG & Industrie


Gemeinde	Wärme- bedarf [kWh/a]
Wandlitz	84.355
Eberswalde	139.635
Dioconthal	07.025


Gemeinde	CO₂- Emissionen [g/a]
Wandlitz	74.788
Eberswalde	129.155
Dioconthal	0 Г (Г (

Gemeinde	Erdgas [kWh/a]
Wandlitz	51.582
Eberswalde	144.902
Riesenthal	57 823

Die Aggregierung der Daten auf die verschiedenen geografischen Ebenen ist am Beispiel des Endenergiebedarfs dargestellt



Aus Datenschutzgründen wurden die Daten je nach geografischer Ebene unterschiedlich stark zusammengefasst

- Innerhalb eines Attributes besteht die Möglichkeit, die Daten zu filtern, bspw. Endenergiebedarf für Gas aller EFHs einer Baualtersklasse je geografischer Ebene
- > Um Rückschlüsse auf einzelne Gebäude auszuschließen, wurden die Daten je nach geografischer Ebene stärker bzw. weniger stark zusammengefasst
- → Eine analoge Aggregation der Daten wurde auch für die Attribute CO₂-Emissionen und Nutzenergie vorgenommen
- › Gebäudestatistische Daten werden auf allen geografischen Ebenen nach Baualtersklasse, Nutzung und Sanierungszustand aggregiert

Dadurch wird vermieden, dass Rückschlüsse auf einzelne Gebäude möglich sind

a | Vereinfachter Gebäudetyp = Wohnen, Gewerbe, Industrie; b | Detaillierter Gebäudetyp = EFH, RH, MFH, ...

Bilanzierungsmethodik des ifeu: BISKO – Bilanzierungs-Systematik Kommunal

- > BISKO ist eine Methodik zur kommunalen Treibhausgasbilanzierung für Energie- und Verkehrssektor
- > Dabei konnten mehrere Elemente festgelegt werden, welche die BISKO-Standards bilden, u.a.:

Endenergiebasierte Territorialbilanz

Alle Endenergieverbräuche innerhalb der Gemarkung auf einer Kommune sollen erfasst werden

Differenzierte Aufteilung

Aufteilung in unterschiedliche Sektoren und Energieträger

Ausweisung Datengüte

Zeigt Aussagekraft der Bilanz und zu Grunde liegender Daten

CO₂-Faktoren ohne Äquivalente & Vorketten

Berücksichtigung von reinen CO₂-Emissionen nach dem UBA bei Emissionsfaktoren

Bilanzierung ohne Witterungskorrektur

Für Basiskalkulation einer Kommune nicht notwendig

Bilanzierungsprinzip: endenergiebasierte Territorialbilanz

"Es werden alle im betrachteten Territorium anfallenden Verbräuche auf Ebene der Endenergie (Energie, die z. B. am Hauszähler gemessen wird) berücksichtigt und den verschiedenen Verbrauchssektoren zugeordnet. Über spezifische Emissionsfaktoren werden dann die THG-Emissionen berechnet. Graue Energie^a wird nicht bilanziert." BISKO

- › Bilanzierung im Wärmekataster bezogen auf Endenergie, die Wärmeerzeugung zugeordnet werden kann
- Die Bilanzierung im Wärmekataster Brandenburg soll auf verschiedenen Ebenen möglich sein, differenziert nach:
 - Gebäudetyp (WG, NWG, Industrie)
 - > Energieträger
 - > Territorialbilanz auf Gemeindeebene (Aggregation generell auf beliebigen Ebenen möglich)
 - › Aufteilung in Raumwärme, Prozesswärme, Kälte möglich

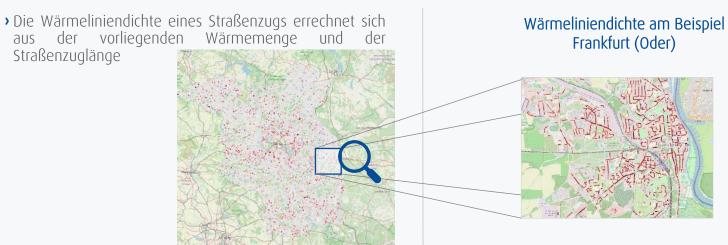
Die Bilanzierung folgt einer Verursacherbilanz ohne Vorkette für Wärmeerzeugung und wird gebäudescharf nur für CO₂-Emissionen berechnet

Die CO₂-Emissionen für Prozess- und Raumwärme sowie Kältebedarfe wurden anhand von Emissionsfaktoren bestimmt

- Die Emissionsbilanzierung wurde gemeinsam Abstimmung mit dem Landesamt für Statistik Brandenburg abgestimmt und erfolgte gem. der Faktoren des Umweltbundesamts
- Die CO₂-Emissionen wurden gebäudescharf ermittelt, indem der Endenergiebedarf und der eingesetzte Energieträger jeweils mit dem seinem Emissionsfaktor verrechnet wurde
- → Die CO₂-Emissionen wurden getrennt nach Prozess- und Raumwärme sowie Prozess- und Raumkälte betrachtet. Die CO₂-Emissionen für Kälte wurde mit den spezifischen CO₂-Emissionenfaktoren von Strom bestimmt

Emissionsfaktoren der Energieträger (in qCO₂/kWh)

Energieträger	CO ₂ -Emissionsfaktor
Heizöl	266,47 ^a
Erdgas	201,00 b
Strom	420,00 b
Biomasse	16,18 ^a
Biogas	34,11 ^a
Fernwärme	255,31 ^a
Wasserstoff	0,00 c
Steinkohle	337,23 ^d
Braunkohle	397,99 ^d


Die CO₂-Emissionen wurden differenziert nach Wärme und Kälte für die jeweiligen Energieträger gebäudescharf berechnet

a | UBA (2021); b | UBA (2022); c | Annahme MWAE & ce|co; d | AfSBB (2022)

Um eine netzgebundene Wärmeplanung durchzuführen, wurden Wärmemengen je Straßenzug bzw. Wärmeliniendichten bestimmt

Mithilfe der Wärmeliniendichte lassen sich techno-ökonomische Analysen für den Ausbau von Nah-, Gas-, Wasserstoff- und Fernwärmenetzen ermöglichen

Abkürzungsverzeichnis

AfSBB	Amt für Statistik Berlin-Brandenburg	СВ	Cottbus	
ALKIS	Amtliches Liegenschaftskataster- informationssystem	ce co	con energy consult GmbH	
AP	Arbeitspaket	DSGVO	Datenschutz- Grundverordnung	
BAR	Barnim	Eawag	Wasserforschungsinstitut des ETH-Bereichs	
BB	Brandenburg	EE	Elbe-Elster	
BDEW	Bundesverband der Energie- und Wasserwirtschaft	EE-Potenzial	Potenzial für Erneuerbare Energien	
BHKW	Blockheizkraftwerk	EFH	Einfamilienhaus Energie Mark Brandenburg	
BISKO	Bilanzierungs-Systematik Kommunal	EMB		
BRB	Brandenburg an der Havel	EW	Einwohner	

Abkürzungsverzeichnis

FF	Frankfurt (Oder)	IWU	Institut Wohnen und Umwelt Kraft-Wärme-Kopplung	
Fraunhofer IEE	Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik	KWK		
FW/NW	Fern-/Nahwärme	LAK	Länderarbeitskreis Energiebilanzen	
GIS	Geoinformationssystem	LANUV	Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen	
GMH	Großes Mehrfamilienhaus	LBGR	Landesamt für Bergbau, Geologie und Rohstoffe	
НН	Hochhaus	LBV	Landesamt für Bauen und Verkehr	
HVL	Havelland	LDA	Landesbeauftragte für den Datenschutz und für das Recht auf Akteneinsicht	
IFEU	Institut für Energie- und Umweltforschung Heidelberg gGmbH	LDS	Dahme-Spreewald	

Ministerium für Wirtschaft

Abkürzungsverzeichnis

LFB	Landesbetrieb Forst Brandenburg	MWAE	Arbeit und Energie NBB Netzgesellschaft Berlin- Brandenburg mbH & Co. KG	
LfU	Landesamt für Umwelt	NBB		
LGB	Landesvermessung und Geobasisinformation	NWG	Nicht-Wohngebäude	
LK	Landkreis	OHV	Oberhavel	
LOS	Oder-Spree	OPR	Ostprignitz-Ruppin	
MFH	Mehrfamilienhaus	OSL	Oberspreewald-Lausitz	
MIL	Ministerium für Infrastruktur und Landesplanung	Р	Potsdam	
MLUK	Ministerium für Landwirtschaft, Umwelt und Klimaschutz	PEF	Primärenergiefaktor	
MOL	Märkisch-Oderland	PM	Potsdam-Mittelmark	

Abkürzungsverzeichnis

PR	Prignitz	WG	
PV	Photovoltaik	ZALF	
RH	Reihenhaus		
RLI	Reiner-Lemoine-Institut		
SPN	Spree-Neiße		
TF	Teltow-Fläming		
UBA	Umweltbundesamt		
UM	Uckermark		
VKU	Verband kommunaler Unternehmen		
WfBB	Wirtschaftsförderung Land Brandenburg GmbH		

Wohngebäude WG

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V.

Kontakt

Juliane Hauskrecht

Partnerin, Geschäftsführerin Telefon: +49 30 364100-200 Mobil: +49 174 328 20 64 Email: hauskrecht@ceco.de

Philipp Melzer

Projektleiter

Telefon: + 49 30 364 100 205 Mobil: +49 151 418 803 52 Email: melzer@ceco.de

**tagueri consult

con energy

conlenergy consult GmbH Joachimsthaler Straße 20 10719 Berlin www.ceco.de

